Fuel Cycle R&D Program

Status of the ALSEP Concept

Gregg J. Lumetta
Pacific Northwest National Laboratory

Artem V. Gelis
Argonne National Laboratory

First SACSESS International Workshop
April 22 – 24, 2015
Warsaw, Poland
Purpose: Reduce Complexity

Dissolved Fuel

TBP Cycle

TRUEX

TALSPEAK

Lanthanides

U, Pu, Np, Tc

Non-Ln Fission products

Am/Cm

Dissolved Fuel

TBP Cycle

ALSEP

Lanthanides + other fission products

Am/Cm

2015 SACSESS Workshop
Warsaw, Poland
Combine a neutral donor extractant with an acidic extractant to yield a hybrid solvent system for separating minor actinides (MA) from acidic HLW

- Neutral extractant co-extracts MA & Ln from HNO₃
- Acidic extractant operates in “reverse TALSPEAK” mode—selective stripping of MA with polyaminocarboxylate ligand
First combination

- CMPO (neutral extractant)
- HDEHP (acidic extractant)

 - MA and Ln D values decreased with increasing [HNO₃]
 - Synergic extraction behavior of Am in the MA stripping regime limited the separation factor
 - MA stripping highly pH dependent

 - Slope of logD vs pH is approximately −2
Second combination
- CMPO (neutral extractant)
- HEH[EHP] (acidic extractant)

An improvement
- MA and Ln extraction from HNO₃ improved
- Less synergism in the distribution behavior of Am in the MA stripping regime
- Less dependence on the pH

But...
- MA and Ln D values for extraction from HNO₃ are modest (< 10)
- D values decrease at [HNO₃] > 2 mol/L
Third combination

- T2EHDGA (neutral extractant)\(^{(a)}\)
- HEH[EHP] (acidic extractant)

\[\text{T2EHDGA; } R = \text{CH}_2\text{CH}([\text{CH}_2\text{CH}_3])\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3 \]

\[\text{TODGA; } R = n-(\text{CH}_2)_7\text{CH}_3 \]

\[\text{HEH[EHP]} \]

\(^{(a)}\) TODGA can also be considered
Am reasonably extracted at ≥ 2 M HNO$_3$.

Lanthanide D values increase with increasing Z, up to Eu and Gd (which are nearly the same).

La D values are less than 1.
 - Can separate La from the MA in the extraction stages.
Ln D values
- La and Ce increase with increasing pH
- Pr and Nd go through maxima
- Sm, Eu, Gd decrease with increasing pH

The Am D values
- Decrease as the pH increases from 2 to 4
- Slope -0.26

Above pH 2.9, the minimum separation factor depends little on pH
- SF \approx 21 to 25
- Defined by Nd/Am couple

0.05 M T2EHDGA + 0.75 M HEH[EHP]
0.125 M HEDTA + 0.2 M citrate
- Zr(IV) strongly extracted by the ALSEP solvent
- Addition of CDTA to the feed completely suppresses Zr extraction
Mo scrubbing

- Mo(VI) strongly extracted from HNO$_3$
- Mo must be removed from the solvent before MA stripping so that the MA product is not contaminated with Mo
- Scrubbing with a citrate buffer is the preferred method
 - Removes Mo
 - Conditions solvent for subsequent MA stripping step
 - Residual acid in the solvent is removed
- 0.2 M citrate is adequate—no advantage to higher concentrations
- pH independent at pH > 3.3
 - But must account for initial drop in pH caused by neutralization of residual HNO$_3$ in the solvent

0.05 M T2EHDA + 0.75 M HEH[EHP]

- **0.2 M citrate**
- **pH ~ 3.3**
- **[citrate], mol/L**

April 22–24, 2015

2015 SACSESS Workshop
Warsaw, Poland
Fe(III) behavior

- In the absence of CDTA, the Fe D values increased with increasing time and do not appear to reach equilibrium even after 3 h.
- When CDTA present, the D values do level off some after 50 min (but eventually creep up again at longer contact times).
- Potential explanation: slow precipitation of Fe from the system.

Iron(III) distribution ratios as a function of time for extraction from 2 mol/L HNO$_3$ into 0.05 mol/L T2EHDGA + 0.75 mol/L HEH[EHP] in n-dodecane.
Kinetics poses some challenges

- Forward extraction kinetics from 3M HNO₃ appears to be fast
 - Less than 1 min shaking on Vortex mixer@3200rpm is sufficient

- Back extraction kinetics of Am from 0.05M TODGA/0.75M HEH[EHP] with 0.025 M DTPA takes somewhat longer
 - SF ~ 60 in 90 sec, might be an issue for centrifugal contactors with short residence times
Forward extraction kinetics with ALSEP solvent from 3M HNO₃ PUREX raffinate is fast

Only Mo extraction is slow

- OK since it is desired that Mo remain in the ALSEP raffinate
Am back extraction with DTPA/citrate following a citrate wash step

La and Ce D values are independent of the flow rate, but Am D value increases with increasing flow...lower separation factors at desired flow rates

Elevated temperature helps, but SF (Nd/Am) is lower than 10
- ALSEP solvent back-extracted with HEDTA/citrate solution
- SF for Nd, Pm and La are the worse case, but value of 10 is accomplished
- D(Ln) are lower than equilibrium D despite back-extraction regime
- Total flow rates are lower than desired
- Also tested HEDTA/Citrate pH 3.2 (ambient T) and pH 2.4 at elevated temperature without particular success
Modified compositions—
0.04M T2EHDGA/0.6M HEHEHP
12 mM DTPA/0.8M Malonate

- Decreased both HEHEHP and DGA conc.
- Decreased [DTPA], lowered pH and switched to malonate buffer to minimize Am-buffer complex formation
- Co-extraction step from 3 M HNO₃
 - D's are sufficient: Am-4.1, Pm-6.5, Eu-15, La-0.5
- Back extraction – test tube results:

April 22–24, 2015

2015 SACSESS Workshop
Warsaw, Poland
Summary

- ALSEP is a promising method for recovering minor actinides from acidic HLW in a single solvent extraction process cycle.
- The basic aspects of the process chemistry have been established:
 - Extraction from nitric acid
 - Scrubbing of Mo
 - MA stripping
 - Ln stripping
 - Zr suppression/stripping
- Minor actinide stripping kinetics present some challenges to implementing ALSEP with centrifugal contactors, but progress is being made to resolve this issue:
 - Use of HEDTA as stripping agent with citrate buffer at pH ~2.7
 - Use of DTPA as stripping agent with malonate buffer at pH ~2.7 and 40 to 45 °C
This work was funded by the U.S. Department of Energy, Office of Nuclear Energy, through the Fuel Cycle Research and Development Program.

Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RL01830.

Contributors:
- Tatiana Levitskaia
- Brian Rapko
- Jennifer Carter
- Cyndi Niver
- Margaret Smoot