The AmSel Process – Selective Separation of Americium from PUREX raffinate

Christoph Wagner, Udo Müllich, Andreas Geist, Petra J. Panak
Partitioning and Transmutation:

- Strategy to reduce long term radiotoxicity and heat load of nuclear waste.

- Aim: separation of Pu and minor actinides (Np, Am and Cm) and transmuting them into short-lived or stable nuclides.

Our goal: **selective extraction of Am(III) from PUREX raffinate**

→ separation of Am(III) from Cm(III), Ln(III) & other fission products (FP) and corrosion products (CP)
Why separate americium from curium?

Curium:
- no significant impact on long-term radiotoxicity or heat load of nuclear waste
- High neutron dose rates and decay heat complicate production of new nuclear fuel

→ disposal in high active waste

Separation of Am(III) should be performed early in the process

EXAm process already successfully tested

Strategy

- Co-extraction of Am(III), Cm(III) and Ln(III)
- Selective Am(III) stripping
Strategy

- Co-extraction of Am(III), Cm(III) and Ln(III)
- TODGA
 - Extracts An(III) + Ln(III) from HNO₃
 - Rejects most non-Ln fission products
 - Rejects corrosion products
 - Successfully used in DIAMEX and i-SANEX processes
Strategy

- TODGA prefers Cm(III) over Am(III) \(SF_{\text{Cm(III)/Am(III)}} = 1.6 \)

- Requirement for selective Am(III) stripping:
 - Ligand has to prefer Am(III) over Cm(III)
 - Well soluble in water / nitric acid

- BTBP prefers Am(III) over Cm(III) \(SF_{\text{Am(III)/Cm(III)}} = 1.6 \)
 - Water soluble BTBP? \(SF(\text{TODGA}) \cdot SF(\text{BTBP}) = 2.6? \)
Extraction experiments with TODGA and SO$_3$-Ph-BTBP

Aq. phase: 20 mM SO$_3$-Ph-BTBP, Am(III)-241, Cm(III)-244, Eu(III)-152 (1 kBq/ml each) in HNO$_3$
Org. phase: 0.2 M TODGA + 5% vol. 1-octanol in Exxsol D80

$SF_{\text{Cm(III)/Am(III)}} = 2.5–3$

$\frac{\text{[HNO}_3\text{]}_{\text{ini}} \text{[mol/l]}}{10^0}$

$D(\text{M(III))}$

$10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^0 10^1 10^2 10^3 10^4$

SF

$10^{-2} 10^{-1} 10^0 10^1 10^2 10^3 10^4$

α Am(III) γ Am(III) α Cm(III) γ Eu(III) $\frac{SF_{\text{Cm(III)/Am(III)}}}{SF_{\text{Eu(III)/Am(III)}}}$
Extraction experiments with TODGA and SO$_3$-Ph-BTBP

Aq. phase: 20 mM SO$_3$-Ph-BTBP, Am(III)-241, Cm(III)-244, Eu(III)-152 (1 kBq/ml each) and 6 mg/l of each Ln(III), Y(III) and La(III) in HNO$_3$

Org. phase: 0.2 M TODGA + 5% vol. 1-octanol in Exxsol D80
Extraction experiments with TODGA and SO$_3$-Ph-BTBP

Formation of 1:1 complex? → TRLFS studies

Aq. phase: SO$_3$-Ph-BTBP, Am(III)-241, Cm(III)-244, Eu(III)-152 (1 kBq/ml each) in 0.51 M HNO$_3$
Org. phase: 0.2 M TODGA + 5% vol. 1-octanol in Exxsol D80
Complexation of Cm(III) with SO$_3$-Ph-BTBP

Cm(III) emission spectra with increasing SO$_3$-Ph-BTBP concentration in 0.5 M HNO$_3$

only one complex species
Complexation of Eu(III) with SO$_3$-Ph-BTBP

Eu(III) 7F_4 band emission spectra with increasing SO$_3$-Ph-BTBP concentration in 0.5 M HNO$_3$

2 complex species formed, primarily 1:2 complex
Complexation of Cm(III) with SO$_3$-Ph-BTBP

The reaction can be represented as:

$$[\text{M(solv)}]^{3+} + \text{SO}_3\text{-Ph-BTBP}^{4-} \rightleftharpoons [\text{M(SO}_3\text{-Ph-BTBP)}]^+ \rightleftharpoons [\text{M(SO}_3\text{-Ph-BTBP)}]^2]^{5-}$$

where M(solv) represents the solvent-separated ion pair.

The equilibrium constants are denoted as $\log K_{01}$ and $\log K_{12}$.

The stability constants are given by:

$$\log \beta_{02} = 7.3 \pm 0.3$$

$$\Delta \log \beta_{02} = 1.9$$

Cm(III) complexation

Eu(III) complexation

$$\log \beta_{02} = 5.4 \pm 0.5$$

$$\log \beta_{02} = 5.4 \pm 0.5$$

$n = 2$

$slope = 1.2 \pm 0.2$

$n = 1$

$slope = 0.9 \pm 0.2$
TRLFS with extraction experiments

2 phase extraction experiments containing Cm(III)/Eu(III) in the aq. Phase

SO$_3$-Ph-BTBP forms 1:2 complexes in extraction experiments

Aq. phase: 20 mM SO$_3$-Ph-BTBP, Cm(III)-248 in 0.5 M HNO$_3$
Org. phase: 0.2 M TODGA + 5% vol. 1-octanol in Exxsol D80
Complexation of Cm(III) at pH 3

- TRLFS investigation of Cm(III) with SO$_3$-Ph-BTP showed the formation of intermediate complexes

- studies with SO$_3$-Ph-BTP were performed in water at pH 3

→ investigation of Cm(III) complexation with SO$_3$-Ph-BTBP at pH 3

Complexation of Cm(III) at pH 3

Cm(III) emission spectra with increasing SO$_3$-Ph-BTBP concentration in 10$^{-3}$ M HClO$_4$

$\log \beta_{02} = 10.4 \pm 0.4$

($\log \beta_{02} (0.5$ M HNO$_3$) $= 7.3 \pm 0.3$)

→ large influence of solvent
Complexation of Cm(III) in different media

0.5 M NaClO₄, pH 3

0.5 M NaNO₃, pH 3

0.5 M HClO₄
Influence of medium on conditional stability constant

<table>
<thead>
<tr>
<th>M(III)</th>
<th>Solvens</th>
<th>logβ_{01}</th>
<th>logK_{12}</th>
<th>logβ_{02}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cm</td>
<td>10^{-3} M HClO$_4$</td>
<td>5.3 ± 0.3</td>
<td>5.1 ± 0.3</td>
<td>10.4 ± 0.4</td>
</tr>
<tr>
<td>Cm</td>
<td>0.5 M HNO$_3$</td>
<td>-</td>
<td>-</td>
<td>7.3 ± 0.3</td>
</tr>
<tr>
<td>Cm</td>
<td>0.5 M NaClO$_4$</td>
<td>-</td>
<td>-</td>
<td>9.7 ± 0.3</td>
</tr>
<tr>
<td>Cm</td>
<td>0.5 M NaNO$_3$</td>
<td>-</td>
<td>-</td>
<td>9.4 ± 0.3</td>
</tr>
<tr>
<td>Cm</td>
<td>0.5 M HClO$_4$</td>
<td>-</td>
<td>-</td>
<td>8.5 ± 0.4</td>
</tr>
</tbody>
</table>

Large effect of medium on speciation and conditional stability constant
Influence of ionic strength

Cm-SO$_3$-Ph-BTBP complexation with increasing ionic strength
Conclusion

- The SO$_3$-Ph-BTBP/TODGA system shows good performance for the separation of Am(III)/Cm(III).

- The system does not require buffers, auxiliary ligands or salting out agents.

- SO$_3$-Ph-BTBP forms 1:2 complexes during extraction.

- Formation of the same complexes in monophasic and biphasic experiments.

- The applied medium has a large effect on the speciation and the conditional stability constants of M(III)-SO$_3$-Ph-BTBP complexes.
Outlook

- Extraction experiments at elevated temperatures.
- Investigation of SO$_3$-Ph-BTBP loading with realistic Am(III) concentrations.
- Spectroscopic investigation of Am(III)-SO$_3$-Ph-BTBP complexes.
Thank you for your attention

Acknowledgements to:

Prof. Dr. Geckeis
The partitioning group
Tanja Kisely and Cornelia Walschburger
And all colleagues from INE

Acknowledgements to the Commission of European Community for financial support
Complexation of Cm(III) in the org. phase

TRLFS experiments with organic phase of extraction experiment

No evidence for the formation of mixed complexes → sensitivity too low?

Aq. phase: 20 mM SO$_3$-Ph-BTP, Cm(III)-248 in 0.5 M HNO$_3$
Org. phase: 0.2 M TODGA + 5% vol. 1-octanol in Exxsol D80
Fluorimetric measurements with org. Phase

Idea:
Utilizing the energy transfer from ligand to metal to selectively excite the Eu(III) in mixed complexes

Aq. phase: 20 mM SO$_3$-Ph-BTP, 30 mM Eu(NO$_3$)$_3$ in 0.5 M HNO$_3$
Org. phase: 0.2 M TODGA + 5% vol. 1-octanol in Exxsol D80
Schematic flowsheet

The AmSel Process – Selective Separation of Americium from PUREX raffinate

Institute for Nuclear Waste Disposal (INE)

24
pKᵦ value of SO₃-Ph-BTBP

The pKᵦ value of SO₃-Ph-BTBP was determined to be pKᵦ = 2.2 ± 0.2.
TRLFS Setup
Spectroscopic properties of Cm(III)

- Identification and quantification of different species
- Large effect of changes in first coordination sphere
- Little effect of changes in second coordination sphere
Spectroscopic properties of Eu(III)

- Small shifts of the emission bands with changes in inner coordination sphere
- Characteristic splitting
- Information on the coordination structure and symmetry