

Hydrogen yields from plutonium alpha-radiolysis of nitrate solutions

SACSESS International Workshop 24th April 2015

 NNL: <u>Robin Orr</u>, Howard Sims, Robin Taylor, Kevin Webb, Colin Gregson
University of
Manchester: Simon Pimblott, Greg Horne

- Nitric acid is used widely within the nuclear industry:
 - Dissolution of spent nuclear fuel
 - Reprocessing facilities
 - Analytical processes
 - POCO and decommissioning operations
- Hydrogen production from radiolysis of aqueous solutions is a potential hazard:
 - Flammable gas mixtures
 - Pressurisation
- Relevant to safety studies of reprocessing flowsheets at higher plutonium concentrations e.g. GANEX and mixed oxide fuel reprocessing

Water radiolysis: Hydrogen production

- Removal of hydrogen by OH⁻
 - $OH^{\cdot} + H_2 \rightarrow H^{\cdot} + H_2O$

Water radiolysis: Hydrogen NATIONAL NUCLEA production and the effect of nitrate

LABORATO

• Scavenging of the precursors of H_2

• $e_{pre/aq}^- + NO_3^- \rightarrow NO_3^{2-}$ $H^{\bullet} + NO_3^- \rightarrow NO_3^{2-} + H^+$

Literature: Gamma radiolysis of nitrate and nitric acid solutions

• Pastina J. Phys. Chem. 103 (1999) 5841

Kazanjian Trans. Farad. Soc. 66 (1970) 2192

Literature: Pu alpha radiolysis of NATIONAL NUCLEA nitric acid

LABORATO

Literature: Alpha radiolysis of nitric acid

NATIONAL NUCLEA

LABORATOR

Literature: Alpha radiolysis of nitric acid

- Results for Pu fall below those for Cm and Po
- Kuno observed a small effect of Pu concentration on G(H₂) but Bibler did not for addition of Pu to Cm solution

Kuno saw an effect of solution depth while Bibler recorded an effect from solution agitation ([NO₃⁻] 0.7 – 10 mol.L⁻¹)

Experimental method

- Solutions
 - Pu concentration 12 g.L⁻¹ (0.05 mol.L⁻¹)
 - 0.75 mol.L⁻¹ H₂SO₄
 - 0.0001-6 mol. L⁻¹ HNO₃
- Hydrogen yield
 - Typically 0.5 ml solution in ~60 ml glass vessel
 - Vessel sealed and periodically headspace sampled by gas syringe (~10 ml gas) with stirring prior to sampling
 - Sampled gas volume replaced with air
 - Hydrogen concentration determined using μ -GC (Mol-sieve 5A column, Ar carrier, TCD detector)

Experimental method: Example hydrogen production rates

Initial results: plutonium nitrate

Effect of plutonium concentration? NATIONAL NUCLE

- Pu(IV) is a scavenger of hydrogen precursors
 - $Pu^{4+} + e_{aq} \rightarrow Pu^{3+}$ k=3x10¹⁰ L.mol⁻¹.s⁻¹
- Analogous effect well established for Cu²⁺
 - $Cu^{2+} + e_{aq}^{-} \rightarrow Cu^{+}$ k=3.3x10¹⁰ L.mol⁻¹.s⁻¹
 - $Cu^{2+} + e_{pre}^{-} \rightarrow Cu^{+}$ k~1x10¹³ L.mol⁻¹.s⁻¹
- Compare with NO₃⁻
 - e_{aq}^{-} + NO_{3}^{-} \rightarrow NO_{3}^{2-} k=9.7x10⁹ L.mol⁻¹.s⁻¹
 - e_{pre}^{-} + $NO_3^{-} \rightarrow NO_3^{2-} k \sim 2x10^{13} \text{ L.mol}^{-1}.\text{s}^{-1}$
- Scavenging capacity = $k_s x[S]$
- Further experiments performed with a range of Pu concentration: 1-38 g.L⁻¹ (0.0004-0.16 mol.L⁻¹)

Pastina et al., J. Phys. Chem. A, 103 (1999) 5841

Results: Effect of plutonium concentration

Effect of plutonium concentration? NATIONAL NUCLEAR

- Evidence of an effect from Pu concentration at low nitrate concentration
- Unlikely the concentration dependence seen by Kuno is due to Pu(IV) scavenging precursors of H₂
- Further measurement made using Am in nitric acid
- Am(III) does not scavenge precursors of hydrogen
- Two test methods used:
 - Same as previous method
 - Sealed "Single shot" vessels only sampled once but using 5 ml solution

Results: Americium nitric acid solutions

Conclusions/summary

- New measurements of the molecular yield from nitric and sulphuric acid solutions reported, particularly at low concentrations of nitrate
- Results are consistent with previously reported data for alpha radiolysis at high nitrate concentrations
- Evidence of an effect of Pu concentration at low nitrate concentrations

• SACSESS project

- Sellafield Ltd.
- UK Nuclear Decommissioning Authority